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Abstract: Simultaneous equation models describe a two-way flow of influence among variables. Simultaneous 
equation models using panel data, especially for fixed effect where there are spatial autoregressive and spatial 
errors with exact solutions, still require to be developed. In this paper, we develop the new models that it 
consist of spatial autoregressive and spatial errors. We call it as general spatial. This paper proposes feasible 
generalized least squares-three-stage least squares (FGLS-3SLS) to find all the estimators with exact solution 
and the numerical approximation estimators by concentrated log-likelihood formulation with method of 
forming sequence. All proposed estimators especially for closed-form estimators are proved to be consistent. 
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1 Introduction 
If the model contains spatial influence and the 

spatial influence comes only through the error 
terms, we can use spatial error model [1]. Moreover, 
if the model contains spatial influence and the 
spatial influence comes only through the dependent, 
we can use spatial autoregressive model [2]. Now, 
we develop the paper where there are spatial 
autoregressive and spatial errors. The new models 
include two spatials, namely spatial autoregressive 
and spatial error. We call it general spatial. 

System methods are the methods which are much 
more efficient than the single-equation methods 
because they use much more informations [3]. 
Single-equation methods and system methods are 
two methods which it can be used to find the 
estimators of parameter in simultaneous equation 
models [3]. 

Estimators of three-stage least squares (3SLS) 
are more robust than other estimators, like full 
information maximum likelihood (FIML) [4]. 
Consequently, solution technique by means of 3SLS 
is much more advantageous than the one by FIML 
because it is both time saving and cost saving. 

In this solution, we still use first-order queen 
contiguity to find row-standardized spatial weight 
matrix [5] and Moran Index to examine spatial 
influence [6-8]. Some papers about estimation of 
parameter in simultaneous equation models for fixed 

effect are revealed in [9], and [10]. But, estimating 
these parameters had done by simulation. 

In this paper, we are motivated to develop 
simultaneous equation models for fixed effect panel 
data with one-way error component by means of 
3SLS solutions, especially for both spatial 
correlation among dependent variables and spatial 
correlation among errors. We call it as general 
spatial. 

The objective of this paper is to obtain the 
closed-form estimators of parameter models by 
means of feasible generalized least squares-three-
stage least squares (FGLS-3SLS) and the numerical 
approximation estimators of parameter models by 
means of concentrated log-likelihood formulation 
with method of forming sequence. And then, to 
prove their consistency, especially for closed-form 
estimators. 
 
 
2 Models Development 

We had an equation by [2], namely 
,hj h hj h hj h hj hj      y 1 X α Y β 1 u      (1) 

for 1,2,3, , ,h m  1,2,3, , ,j T  where 
hjy  

denotes the thj  time period thh  endogenous vector, 

hjX  denotes the thj  time period thh  matrix 

including (for example hk ) exogenous variables, 
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hjY  denotes the thj  time period thh  matrix 
including endogenous explanatory variables except 
the thj  time period thh  endogenous explanatory 
variables, h  denotes the thh  mean parameter, hα  
denotes the thh  parameters vector of exogenous 
variables, hβ  denotes the thh  parameters vector 
of endogenous explanatory variables, hj  denotes 
the thj  time period thh  time specific effect 
parameter, 1  denotes the unit vector, hju  denotes 
the thj  time period thh  random error vector 
assuming mean vector 0  and covariance matrix 

2
h n I  (homoscedasticity) in which 2

h  denotes the 
unknown thh  error variance and nI  denotes the 
n n  identity matrix. There is one restriction, 

namely 
1

0.
T

hj

j




  In this context, we suppose that 

(1) are over identified. 
The next model is general spatial model (GSM) 

which refers to [11], namely: 

 2
,

, , ,nN

 

 

   

 

y 1 Xα W uy
u Wu ε ε 0 I            (2) 

where y  denotes the endogenous vector, X  denotes 
the matrix of observations including (for example 

)k  exogenous variables,   denotes the mean 
parameter, α  denotes the parameters vector of 
exogenous variables,   and   denote the spatial 
autoregressive and the spatial autocorrelation 
parameters, respectively, W  denotes the row-
standardized spatial weight matrix, and u  denotes 
the spatial autocorrelation of random error vector, 
and ε  denotes the random error vector assuming 
normal distribution with mean vector 0  and 
covariance matrix 2

n I  in which 2  denotes the 
unknown error variance. 

If (1) contains spatial influences and the spatial 
influences come through the endogenous and the 
error variables, then we can adopt models in 
equations (2) and obtain new form equations as 
follows: 

2, ( , ).

hj h hj h h hj hj h hj hj

hj h hj hj hj h nN

  

 

      

 

y 1 X α W Y β 1 uy

u Wu ε ε 0 I
(3) 

Equation (3) can be simplified as follows: 
1 ,h hj h hj h hj h hj h hj  

     A y 1 X α Y β 1 B ε   (4) 
for 1,2,3, , ,h m  1,2,3, , ,j T  where 

,h n h A I W  ,h n h B I W  
h  and 

h  denote 
the thh  spatial autoregressive and the thh  spatial 
autocorrelation parameters, respectively, and 

hju  

denotes the thj  time period thh  spatial 
autocorrelation of random error vector, and 

hjε  
denotes the thj  time period thh  random error vector 
assuming normal distribution with mean vector 0  
and covariance matrix 2 .h n I  There is one 

restriction, namely 
1

0.
T

hj

j




  

We refer to [12] for the properties of kronecker 
products, [13] for reparameterization, [3, 4, 14] for 
3SLS estimation, [15] for GLS and FGLS, [5] for 
the use first-order queen contiguity to find the row-
standardized spatial weight matrix, [6-8] for 
examining spatial influences by means of Moran 
Index and [16] for consistency. 

For the solution of (4) by 3SLS, we obtain the 
following equation: 

* * * *
1

* * .

t t t t

h hj h hj h hj h
t t

hj h hj




 



  

 

X A X 1 X X α X Y βy
X 1 X B ε   (5) 

We use average value approach of the matrix of 
observations [1, 17, 18] because the estimator of the 
mean is unbiased, consistent, and efficient as 
revealed by [3, 4, 19]. If we use *

t

jX  then the 

restriction 
1

0
T

hj

j




  will not be achieved. This is 

due to *
t

jX  having in general, different values of the 
matrix of observations in every jth time period [1, 7, 
17, 18]. 

We can rewrite (5) to obtain new forms of 
vectors and matrices as follows: 

** ** ** ** ** * ,t t t t t

j j j j   X Ay X Gμ X Z θ X Gγ X B ε   (6) 

where 
j j j

   Z X Y  and t t t


   θ α β  

having dimensions 
1

( 1)
m

h

h

mn k m m


 
   
 
  and 

1
( 1) 1

m

h

h

k m m


 
   

 
 , respectively. 

Explanation of the vectors and matrices from 

equations (5)-(6) are **X  denotes the 
1

m

h

h

mn m k


   

diagonal matrix whose submain diagonal is * ,X  

* *
1

1 T

j

jT 

 X X  where *X  denotes the 
1

m

h

h

n k


  

matrix including all the exogenous variables in the 
system, A  denotes the mn mn  diagonal matrix 
whose submain diagonal is the n n  matrix ,hA  

jy  denotes the 1mn  vector including all of the 
1n  vectors ,hjy  G  denotes the mn m  diagonal 
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matrix whose submain diagonal is ,1  *B  denotes 
the mn mn  diagonal matrix whose submain 
diagonal is the n n  matrix 1,h

B μ  denotes the 
1m  vector including all of ,h  

jX  denotes the 

1

m

h

h

mn k


  diagonal matrix whose submain diagonal 

is the 
hn k  matrix ,hjX  α  denotes the 

1
1

m

h

h

k


  

vector including all of the 1hk   vectors ,hα  
jY  

denotes the ( 1)mn m m   diagonal matrix whose 
submain diagonal is the ( 1)n m   matrix ,hjY  β  
denotes the ( 1) 1m m   vector including all of the 
( 1) 1m   vectors ,hβ  jγ  denotes the 1m  vector 

including all of ,hj  and jε  denotes the 1mn  

vector including all of the 1n  vectors ,hjε  as well 
as n  denotes the sampel size of observations. For 

1,2,3, , ,j T  the restriction 
1

0
T

hj

j




  is changed 

1
.

T

j

j

γ 0  

 
 
3 Estimating the Parameters 

Now, we consider the equation (6). Estimation of 
parameters models are conducted in three stages. At 
the first-stage, we estimate all the endogenous 
explanatory variables in the system in every time 
period. This first-stage is the same as the previous 
paper [2]. 

At the second-stage, we estimate parameters of 
, , ,h h h α β  and 

hj  to obtain residual estimate of 
equation (4). Because equation (4) has non-
homoscedastic error, we first tranform this equation. 

   
11 2 2var .t

h hj h h h h n 


  B ε B B I  Premultiplying 

(4) by  
1

1 2 ,t

h h h  B B  we obtain 

     

   

 

1 1 1
2 2 2

1 1
2 2

1
12

(7)

.

t t t

h h h hj h h h h h hj h

t t

h h hj h h h hj

t

h h h hj



 



 

 



B B A y B B 1 B B X α

B B Y β B B 1

B B B ε
 

We can omit the value of 1
h
  because it is a finite 

constant. Now, the equation (7) has satisfied a 
regression model requirement. 

We then substitute 
hjY  by ˆ

hjY  in (7), where 
ˆ ˆ ,hj hj hj   Y Y V  where ˆ

hjV  is residual estimate 
from the first stage, and obtain new equations as 
follows: 

     

 

1 1 1
2 2 2

1
*2 ,

t t t

h h h hj h h h h h hj h

t

h h hj hj





 

 

B B A y B B 1 B B Z θ

B B 1 u
   (8) 

where ˆ
hj hj hj

 
 

Z X Y  and t t t

h h h
   θ α β  

having dimensions  1hn k m    and 

 1 1 ,hk m    respectively, and *
hju  denotes the 

composite random error with 

   
1 1

* 12 2ˆ .t t

hj h h hj h h h h hj



  u B B V β B B B ε  
The right-hand side matrix of equation (8) is less 

than full rank. But, we can not use n n  
dimensional transformation matrix Q  directly, in 
which Q1 0,  to find the estimator of .hθ  We 

remind again that 
1 t

n
n

 Q I 11  is symmetrical and 

idempotent matrices. 
We need to reparameterize equation (8), namely: 

     
1 1 1
2 2 2

* ,

t t t

h h h hj h h hj h h hj h

hj

 



B B A y B B 1 B B Z θ
u   (9) 

where .hj h hj     
By GLS Solution, we first get the estimator of ,hj  
namely 

   
1

ˆ t t t t

hj h h h h h hj hj h


 1 B B 1 1 B B A y Z θ        (10) 

We then use (10) to find estimator of 
hθ  and by 

GLS solution, we obtain 
1

1

1

ˆ

,

T
t t t

h hj h h h n hj

j

T
t t t

hj h h h n h hj

j







 
    

 

   





θ Z B B 1b I Z

Z B B 1b I A y
         (11) 

where  
1

t t t t t

h h h h h



b 1 B B 1 1 B B  having dimension 

1 .n  
We recall to equation (8) and use the GLS 

solution, we obtain the estimators of 
h  and ,hj  

namely 

 
1

1 ˆˆ ,
T

t

h h h hj hj h

jT




 b A y Z θ       (12) 

and
  ˆˆ ˆ .t

hj h h hj h hj h   b A y 1 Z θ       (13) 

respectively. 
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From (11) to (13), we can estimate *
hju  as follows 

 * ˆˆ ˆˆ ˆ .hj h hj h hj hj h h hj hj      u A y 1 Z θ A y a   (14) 

Matrices of 
hA  and 

hB  contain 
h  and .h  In case 

h  and 
h  are not known, we can estimate it by 

means of concentrated log-likelihood. 
We pay attention to equation (4). Premultiplying 

its both sides by ,hB  we obtain 

,
h h hj h h h hj h h hj h

h hj hj




   

 

B A y B 1 B X α B Y β
B 1 ε          (15)  

By equation (15), the likelihood function of ,hjε  

1,2,3, , ,j T  denoted by hL  is as follows: 

 2 2
2

1

12 exp ,
2

nT
t

h h hj hj

j h

L 






 
  

 
 ε ε  and by 

Jacobian transformation, we obtain the natural 
logarithm of hL  as follow: 

 

 

2
2

1

1ln ln(2 )
2 2

ln ln ,

T
t

h h h h hj h hj

jh

h h hj h hj h h

nT
L

T T


 

   

   

 B A y B a

B A y B a B A  

 

where hA  and hB  are the absolute of the 
determinants of hA  and of ,hB  respectively. 

We take derivative for 2 .h  Setting this derivative 
equal to zero, we obtain the estimator of 2 ,h  
namely: 

 

 

2

1

1ˆ

.

T
t

h h h hj h hj

j

h h hj h hj

nT




 



 B A y B a

B A y B a
         (16) 

By (18), we obtain concentrated log-likelihood as 
follows: 

 

 
1

1ln ln
2

ln

ln ,

T
t

con

h h h hj h hj

j

h h hj h hj h

h

nT
L C

nT

T

T




  



  



 B A y B a

B A y B a B
A

   (17) 

where ln(2 ) .
2 2

nT nT
C     

Let W  have eigenvalues 1 2, , , .n    The 
acceptable spatial autoregressive and spatial 

autocorrelation parameters are  
minimum

1 1h h 


   

[20]. We use numerical method for ln con

hL  to find 
estimators of h  and ,h  namely method of forming 
sequence of h  and h  by means of R program [1, 
7, 17, 18]. Its procedure is as follows: 
1. We make sequences values of h  and ,h  

respectively, namely 

seq(start value, end value, increasing),h  and 
seq(start value, end value, increasing).h   

2. For every hjy  and ,  1,2,3, ,hj h ma  we insert 

values of h  and h  in (17). Because the values 
of 

hja  are unknown, we use the estimator, ˆ
hja , 

where   ˆˆ ˆˆ ,hj h hj hj h   a 1 Z θ  with 

ˆ .hj hj hj
 
 

Z X Y  

3. Finding the values of h  and h  that gives the 
largest ln .con

hL  
Based on the estimate h  and ,h  the 

equations (11) to (13) can be rewritten as follows: 
1

1

1

ˆ ˆ ˆ

ˆˆ ˆ ,

T
t t t

h hj h h h n hj

j

T
t t t

hj h h h n h hj

j







 
    

 

   





θ Z B B 1b I Z

Z B B 1b I A y
         (18) 

 
1

1 ˆ ˆˆ ,
T

t

h h h hj hj h

jT




 b A y Z θ          (19) 

and
  ˆ ˆˆ ˆ ,t

hj h h hj h hj h   b A y 1 Z θ          (20) 

respectively, where 
ˆ ˆ ,h n h A I W  ˆˆ ,h n h B I W  and 

 
1ˆ ˆ ˆ ˆ .t t t t t

h h h h h



b 1 B B 1 1 B B  
The furthermore, equation (14) can be rewritten as 
follows: 

 * ˆ ˆ ˆˆ ˆˆ ˆ .hj h hj h hj hj h h hj hj      u A y 1 Z θ A y a   (21) 
We then use (21) and (16) to find the estimated 

covariance matrix of the estimator *ˆ ,hju  namely 

*

2
1 12 13 1

2
21 2 23 2

2 *2
31 32 3 3

2
1 2 3

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ,  if ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

m

m

hm hh

m m m m

h h

   

   

    

   

 
 
 
   
 
 
 
 

Σ   

with 

 
* * *

* *

1

1 ˆ ˆˆ ˆ ˆ ,
1 ( 1)

T
t t

hj hhh h h j
jT n k m





   

u B B u  

where 2ˆ
h  denotes the thh  estimated error variance, 

*ˆ
hh

  denotes the *thh  and the thh  estimated error 

covariance, and Σ̂  denotes m m  estimated 
covariance matrix. We change the denominator of 
(16) so that it becomes an unbiased estimator [18]. 
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From (6), we have an error covariance matrix, 
namely    ** * ** * * ** #

ˆ ˆ ˆvar var .t t t

j j X B ε X B ε B X Σ  
This covariance shows that the random errors are 
heteroscedastic, where    var t

j j jEε ε ε  for 
* 1,2,3, , ,h h m   

1 2 3 ,t t t t t

j j j j mj
   ε ε ε ε ε  

1 2 3 ,t

hj h j h j h j hnj      ε  
in which we assumed that 

  *
* *

*

*

if 
0 if 

hh
hij h i j

i i
E

i i


 

 
 


 

so that  * * .t

hj nh j hh
E ε ε I  We obtain 

 var j n ε Σ I  with mn mn  as its dimension.  

Consequently,  # ** * * **
ˆ ˆt t

n Σ X B Σ I B X   which is 

1 1

m m

h h

h h

m k m k
 

   symmetrical matrix. If Σ  is 

unknown then we can use its estimator. If we use its 
estimator then  # ** * * **

ˆ ˆ ˆ ˆ .t t

n Σ X B Σ I B X  
In the above results, we see that the error 

variance in equation (6) is not constant and the 
matrix in the right-hand side is less than full rank. 
For the last-stage, we overcome those problems 
again by means of reparameterization and GLS. The 
estimators are as follows: 

1

* * * *

1 1

ˆ ˆˆ ˆ ˆ ˆ ,
T T

t t

j j j j

j j



 

 
  
 
 θ Z H M Z Z H M Ay          (22) 

 
1* *

1

ˆ ˆˆ ˆˆ ,
T

t t

j j

j

T




  
  μ G H G G H Ay Z θ          (23) 

 
1* * ˆ ˆˆ ˆˆ ˆ .t t

j j j



   
 

γ G H G G H Ay Gμ Z θ         (24) 

where 
* 1

** # **
ˆ tH X Σ X  and 

1* * *ˆ ˆ ˆ .t t

mn



  
 

M G G H G G H I  
They have dimensions ,mn mn  respectively. 

In this paper, the estimators of , ,θ α  and 
jγ  are 

called the estimators of feasible generalized least 
squares-multivariate general spatial three-stage least 
squares fixed effect panel simultaneous models 
(FGLS-MGS3SLSFEPSM). 
 
 
4 Properties of Estimators 
Theorem (Consistency). If  

** ** ** ** ** *
t t t t t

j j j j   X Ay X Gμ X Z θ X Gγ X B ε  

as defined in (6), then ˆ ˆ, ,θ μ  and ˆ
jγ  are consistent 

estimators. 
Proof. Recall (6). This can be rewritten as 

* .j j j j   Ay Gμ Z θ Gγ B ε  However, we use the 

estimate ˆ
h  and ˆ .h  The equation (6) can be 

rewritten as *
ˆ ˆ .j j j j   Ay Gμ Z θ Gγ B ε  

Estimators of equation (6) are as follows: 
1

* * * *

1 1
1

* * * *
*

1 1

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ,

T T
t t

j j j j

j j

T T
t t

j j j j

j j



 


 

 
  
 

   
     

   

 

 

θ Z H M Z Z H M Ay

θ Z H M Z Z H M B ε
 

where *ˆ ,M G 0  

 

 

1* *

1

1* * *
*

1 1

ˆ ˆˆ ˆˆ

ˆˆ ˆ ˆ ˆ ,

T
t t

j j

j

T T
t t t

j j

j j

T

T







 

  
 

 
      

 



 

μ G H G G H Ay Z θ

μ G H G G H Z θ θ G H B ε

where 
1

,
T

j

j

γ 0  and 

 
   

1* *

1* *

1* *
*

ˆ ˆˆ ˆˆ ˆ
ˆˆ ˆˆ

ˆ ˆ ˆ .

t t

j j j

t t

j j

t t

j







   
 

     
 

 
 

γ G H G G H Ay Gμ Z θ

μ μ G H G G H Z θ θ γ

G H G G H B ε

 

We refer to [3, 4, 14, 16, 21-23]. Asymptotic 
expectation and variance of ˆ ,θ  ˆ ,μ  and ˆ

jγ  are as 
follows: 

   
1

* *

1

* *
*

1
1

* *
*

1
1

1

1ˆ ˆ ˆ ˆlim lim

1 ˆ ˆ ˆ

1 1 ˆ ˆ ˆlim lim

lim

,

T
t

j j
n n

jT T

T
t

j j

j

T
t

j
n n

jT T

n
T

E E E
nT

nT

nT nT



 
 





 
 








 
    

 
 

  
 

   
      

      

 
        

  








θ θ θ Z H M Z

Z H M B ε

θ K Z H M B 0

θ K 0 θ K 0

θ

=

where K  and K  are constant nonsingular matrices. 
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1

* * * *
*

1
1

* * * *
*

1 1
1

* * * *
*

1

ˆ ˆ ˆ ˆ ˆ ˆasy.var asy.var

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ,

T
t t

j j j j

j

T T
t t

j j j n

j j

T
t t

j j j

j







 




   
   

   

  
   
  

 
  
 



 



θ Z H M Z Z H M B ε

Z H M Z Z H M B Σ I

B H M Z Z H M Z

 where *Ĥ  and * *ˆ ˆH M  are symmetrical. Now, 

 

 

1

* * * *
*

1 1

* *
*

1

* *

1

ˆ ˆ ˆ ˆ ˆ ˆlim asy.var

1 ˆ ˆ ˆlim

1 ˆ ˆlim

T T
t t

j j j
n

j jT

t

n j
n
T

T
t

j j
n

jT

nT

nT




 









  
   
  

  
  
   

 
  
  

 



θ Z H M Z Z H M B

Σ I B H M Z

Z H M Z

 
   

1 * *
*

1
1

* *
*

11

ˆ ˆ ˆ ˆlim asy.var

ˆ ˆ ˆ lim

,

T
t

j
n

jT

t

j
n
T














 



 
  

  

     

θ K Z H M B 0

B H M Z K

K 0 K 0

 

This shows that θ̂  is asymptotically unbiased 
estimator. If n  or T   or both of n  
and ,T   then  ˆasy.var .θ 0  Therefore, θ̂  is a 

consistent estimator. Next, 
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Consequently,  ˆlim asy.var .
n
T



μ 0  

This shows that μ̂  is asymptotically unbiased 
estimator. If n  or T   or both of n  
and ,T   then  ˆasy.var .μ 0  Therefore, μ̂  is 
a consistent estimator. Now, 
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therefore, convergenity be satisfied only if ,n  
namely 
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Consequently,  ˆlimasy.var .j
n

γ 0  

This shows that ˆ
jγ  is asymptotically unbiased 

estimator. If ,n  then  ˆasy.var .j γ 0  

Therefore, ˆ
jγ  is a consistent estimator. 

 
 
5 Illustration 

Suppose there are three endogenous variables 
1 2 3, ,y y y  and six exogenous variables 

11 12 21 22, , , ,x x x x 31 32,x x  observed for two time 
periods and the number of observation being 10 
locations. We use illustration of data, locations, and 
row-standardized spatial weight matrix as it was 
presented in [2]. The equation models are as 
follows: 

1 1 11 11 12 12 1 1 12 2

13 3 1 1

2 2 21 21 22 22 2 2 21 1

23 3 2 2

3 3 31 31 32 32 3 3 31 1

32 2 3 3 ,
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The formulation of Moran Index is as follows: 
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   and * .hj hj hjy y y 1  

If there is at least one  ,hjI E I  then we 
conclude that there is a spatial influence for the 
equation models. 

11 15.80;y   21 28.30;y   31 24.90;y    
 22 28.40;y   32 25.90;y   

11 -0.2442;I  21 0.0539;I  31 0.4586;I 

12 -0.2317;I  22 -0.0878;I  32 -0.1078;I   

and    
1 1 -0.1111.
1 10 1hjE I E I

n

 
   

 
 

Based on the above result, by means of R Program 
version 3.6.1, we obtain that there is a spatial 
influence for the equation models. 

We then continue to estimate parameters by 
means of FGLS-3SLS. For the first-stage, we 
estimate all the endogenous expalanatory variables 
in the system in every time period and the results are 
presented in Table 1. 

For the second-stage we estimate # .Σ  But, we 
first estimate both of spatial autoregressive and 
spatial autocorrelation by means of equation (17). 
By W  matrix, we have the acceptable spatial 
autoregressive and spatial autocorrelation 
parameters are  1.6242 1.h h     By method of 
forming sequence both of h  and h  with 
increasing 0.01  we obtain 
1. seq(-1.6142, 0.99, 0.01)h  and 

seq(-1.6142, 0.99, 0.01).h   

2. For every hjy  and ,  1,2,3,hj h a  we insert 

combination of all possible values of h  and h  
to (17). Because 

hja  is unknown, we use the 

estimate ˆ ,hja  where   ˆˆ ˆˆ ,hj h hj hj h   a 1 Z θ  

with ˆ .hj hj hj
   Z X Y

 
 

3. We obtain 1ˆ -1.6142,   1̂ 0.9258,    

2ˆ -1.6142,   2̂ -0.2242,   3ˆ -1.5742,   and  

3̂ 0.4658   those give the largest 1ln ,conL  2ln conL  
and 3ln ,conL  respectively. 

 
Table 1 Estimated values for endogenous 

explanatory variables 

Time Loca-
tion 

Endogenous explanatory 
variables 

y1-
estimate 

y2-
estimate 

y3-
estimate 

1 1 16.5625 26.5828 21.7290 

 2 15.0373 28.5890 25.1588 

 3 16.1904 27.6672 20.7955 

 4 12.3775 26.0621 23.9145 

 5 16.1804 28.3403 22.0819 

 6 17.2918 26.9959 24.8593 

 7 18.7007 29.1060 26.5129 

 8 12.3543 31.5231 28.7592 

 9 16.4805 31.4345 30.8012 

 10 16.8246 26.6991 24.3877 
2 1 15.5100 25.9073 23.1069 

 2 17.3247 27.0314 24.7638 

 3 15.8433 26.3597 22.8089 

 4 13.3019 25.4562 21.0773 

 5 17.3259 29.7492 27.8872 

 6 18.1930 30.2621 28.3106 

 7 18.0785 31.1379 29.8797 

 8 14.7653 32.0924 30.1569 

 9 14.9671 29.3371 27.3870 
  10 18.6902 26.6667 23.6217 

 
By sequences of h  and h  with increasing 

0.01,  we can also make graphs among the values of 
rho, lambda, and the values of concentrated log-
likelihood as presented in Fig.1. 
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Fig.1: Graphs of function of rho and lambda 

 

As we need to know in Fig. 1, rows are the points of 
rho that its values are seq(-1.6142, 0.99, 0.01),  
columns are the points of lambda that its values are 
seq(-1.6142, 0.99, 0.01),  and value is the value of 
lnLcon. There are 261 points both of rho and 
lambda. Its points are 1,2,3, untill 261. 
 

Table 2 Estimate values for residual errors 

Time Loca-
tion 

Residual errors 
u1-

estimate 
u2-

estimate 
u3-

estimate 
1 1 530.9617 3.6731 -20.1653 

 2 634.4891 123.6771 -30.2136 

 3 708.4265 -83.8497 20.1640 

 4 821.6256 69.4616 11.7260 

 5 677.8279 -63.3284 14.2880 

 6 612.9724 93.3877 78.6841 

 7 612.4407 151.2321 62.3801 

 8 570.8471 245.4605 -133.6357 

 9 609.1129 280.6660 10.3691 

 10 560.6974 109.3295 57.4756 
2 1 1,021.2697 -122.8737 58.6738 

 2 1,005.5465 -99.2300 60.9696 

 3 973.8582 -236.6423 73.0186 

 4 945.0748 -280.0563 73.3787 

 5 748.1006 33.4929 -10.1951 

 6 846.8442 -25.4341 16.2969 

 7 828.7046 73.9246 -26.9565 

 8 801.7122 79.0934 -50.7021 

 9 927.9174 -78.3885 -50.9108 
  10 932.3442 -215.1956 104.0915 

 
From (18) to (20), we obtain 

1 2 3ˆ ˆ ˆ59.8488; 35.7021; 30.2172;      
11 12ˆ ˆ-4.7589; 4.7589;    
21 22ˆ ˆ3.0530; -3.0530;    
31 32ˆ ˆ1.2893; -1.2893.    

11

1
12

1
12

1
13

ˆ 7.5482
ˆ ˆ -36.8974ˆ ;ˆ 34.8812
ˆ

ˆ 3.1676
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21

2
22

2
21

2
23

ˆ 7.9886
ˆ ˆ 10.6995ˆ ;ˆ 6.2486
ˆ

ˆ -44.5616










   
     
            
           

α
θ

β

31

3
32

3
31

3
32

ˆ 8.2808
ˆ ˆ -7.9064ˆ ;ˆ -23.8113
ˆ

ˆ 16.0997










   
     
            
           

α
θ

β

 

Next, from (21) we obtain the estimate values for 
residual errors being presented in Tabel 2. We then 
use the estimate values for residual errors (in Table 
2) to find Σ̂  as follow: 

16,407.7430 -13,327.4840 3,586.3450
ˆ -13,327.4840 55,037.3740 -6,806.3970 ,

3,586.3450 -6,806.3970 8,201.1720

 
 
 
  

Σ  

and we obtain 

#

95,015,762,019 112,938,200,311
112,938,200,311 134,249,432,552

ˆ 95,961,464,592 114,062,507,032

3,116,649,203 3,704,593,381





 




Σ  

        

95,961,464,592 3,116,649,203
114,062,507,032 3,704,593,381

,96,916,769,558 3,147,439,542

3,147,439,542 1,100,342,293







  

where #Σ̂  is the estimator of covariance matrix. 
For the last-stage, we estimate the parameters of 

equation models (25). From (22) to (24), we obtain 
11

12

21

22

31
1

32
2

12

13

21

23

31

32

0.1967
-0.2607
0.2356

-0.0666
0.0036
0.3796ˆ ˆ;
0.3797

-0.3355
0.3474
1.1750
0.0009
1.5913
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= 30.2635
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1 21 2 22
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-4.4505 4.4505
ˆ ˆ1.9577 ; -1.9577 ;

1.5276 -1.5276
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and the estimators equation models (25) are 
1 1 11 1 12 1

11 2 1 3 1

1 1

2 1 21 1 22 1

21 1 1 3 1

2 1

3 1 31 1

ˆ 47.7816 0.1967 0.2607

1.6142 0.3797 0.3355
ˆ4.4505

ˆ 30.2635 0.2356 0.0666

1.6142 0.3474 1.1750
ˆ1.9577

ˆ -3.0592 0.0036 0.37
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where ˆ

hju  are the estimate values for residual errors 
as given in Table 2. 
 
 
6 Conclusion 

In this paper, we are motivated to develop 
simultaneous equation models for fixed effect panel 
data with one-way error component by means of 
3SLS solutions, especially for general spatial. 

The numerical approximation estimators of 
parameter models are obtained by means of 
concentrated log-likelihood formulation with 
method of forming sequence. In this paper, we use 
the increasing values 0.01.  

The closed-form estimators are obtained by 
means of feasible generalized least squares-three-
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stage least squares (FGLS-3SLS) and they are called 
the estimators of feasible generalized least squares-
multivariate general spatial three-stage least squares 
fixed effect panel simultaneous models (FGLS-
MGS3SLSFEPSM). All estimators are consistent 
estimators. 

There is one limitation of this paper, we still use 
the numerical approximation to find the estimators 
of spatial autoregressive and spatial autocorrelation. 
In future research, we encourage to find the closed-
form estimators of spatial autoregressive and spatial 
autocorrelation. In addition, to develop models not 
only for fixed effect but also both fixed effect and 
random effect (mixed models). 
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