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Abstract: Simultaneous equation models describe a two-way flow of influence among variables. Simultaneous
equation models using panel data, especially for fixed effect where there are spatial autoregressive and spatial
errors with exact solutions, still require to be developed. In this paper, we develop the new models that it
consist of spatial autoregressive and spatial errors. We call it as general spatial. This paper proposes feasible
generalized least squares-three-stage least squares (FGLS-3SLS) to find all the estimators with exact solution
and the numerical approximation estimators by concentrated log-likelihood formulation with method of
forming sequence. All proposed estimators especially for closed-form estimators are proved to be consistent.
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1 Introduction

If the model contains spatial influence and the
spatial influence comes only through the error
terms, we can use spatial error model [1]. Moreover,
if the model contains spatial influence and the
spatial influence comes only through the dependent,
we can use spatial autoregressive model [2]. Now,
we develop the paper where there are spatial
autoregressive and spatial errors. The new models
include two spatials, namely spatial autoregressive
and spatial error. We call it general spatial.

System methods are the methods which are much
more efficient than the single-equation methods
because they use much more informations [3].
Single-equation methods and system methods are
two methods which it can be used to find the
estimators of parameter in simultaneous equation
models [3].

Estimators of three-stage least squares (3SLS)
are more robust than other estimators, like full
information maximum likelihood (FIML) [4].
Consequently, solution technique by means of 3SLS
is much more advantageous than the one by FIML
because it is both time saving and cost saving.

In this solution, we still use first-order queen
contiguity to find row-standardized spatial weight
matrix [5] and Moran Index to examine spatial
influence [6-8]. Some papers about estimation of
parameter in simultaneous equation models for fixed
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effect are revealed in [9], and [10]. But, estimating
these parameters had done by simulation.

In this paper, we are motivated to develop
simultaneous equation models for fixed effect panel
data with one-way error component by means of
3SLS solutions, especially for both spatial
correlation among dependent variables and spatial
correlation among errors. We call it as general
spatial.

The objective of this paper is to obtain the
closed-form estimators of parameter models by
means of feasible generalized least squares-three-
stage least squares (FGLS-3SLS) and the numerical
approximation estimators of parameter models by
means of concentrated log-likelihood formulation
with method of forming sequence. And then, to
prove their consistency, especially for closed-form
estimators.

2 Models Development
We had an equation by [2], namely

Vo =1, + X0, + Y B, + 1y, +uy, (1)
for h=1,23,---m, j=123,-T, where y,
denotes the jth time period hth endogenous vector,
X, denotes the jth time period hth matrix

including (for example k,) exogenous variables,
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Y ,. denotes the

i jth time period —hth matrix

including endogenous explanatory variables except
the jth time period hth endogenous explanatory
variables, 1, denotes the hth mean parameter, a,
denotes the hth parameters vector of exogenous
variables, B_, denotes the —hth parameters vector
of endogenous explanatory variables, y, denotes
the jth
parameter, 1 denotes the unit vector, u,; denotes
the
assuming mean vector 0 and covariance matrix
o1, (homoscedasticity) in which o, denotes the

time period hth time specific effect

jth time period hth random error vector

unknown hth error variance and I, denotes the

nxn identity matrix. There is one restriction,

.
namely thj =0. In this context, we suppose that
j=1
(1) are over identified.
The next model is general spatial model (GSM)
which refers to [11], namely:
y=1u+Xa+ pWy+u,
u=AWu+eg, ¢_ N(O,O‘ZIn), )

where y denotes the endogenous vector, X denotes
the matrix of observations including (for example
k) exogenous variables, x denotes the mean
parameter, @ denotes the parameters vector of
exogenous variables, p and A denote the spatial

autoregressive and the spatial autocorrelation
parameters, respectively, W denotes the row-
standardized spatial weight matrix, and u denotes
the spatial autocorrelation of random error vector,
and € denotes the random error vector assuming
normal distribution with mean vector 0 and
covariance matrix o’I in which o* denotes the
unknown error variance.

If (1) contains spatial influences and the spatial
influences come through the endogenous and the
error variables, then we can adopt models in
equations (2) and obtain new form equations as
follows:

Vi =1y + X0, + 0, Wy + Y B +1y +uy,

3
u; =4, Wu, +g:, €. 0N(@O,0.1). ©
Equation (3) can be simplified as follows:
Avyy =1, + X0, + Y B + 1y + Bglshj , @
for h=12,3,---,m, i=123,--T, where

A, =1 —pW, B, =1 —4W, p and 4, denote
the hth spatial autoregressive and the hth spatial
autocorrelation parameters, respectively, and wuy
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denotes the jth time period hth

autocorrelation of random error vector, and g,

spatial

denotes the jth time period hth random error vector
assuming normal distribution with mean vector 0

and covariance matrix o;I,. There is one

T
restriction, namely thj =0.
j=1
We refer to [12] for the properties of kronecker
products, [13] for reparameterization, [3, 4, 14] for
3SLS estimation, [15] for GLS and FGLS, [5] for
the use first-order queen contiguity to find the row-
standardized spatial weight matrix, [6-8] for
examining spatial influences by means of Moran
Index and [16] for consistency.
For the solution of (4) by 3SLS, we obtain the
following equation:
XAy, =X, + XX 0, + XY B, s
+ X1y, + XiB g )
We use average value approach of the matrix of
observations [1, 17, 18] because the estimator of the
mean is unbiased, consistent, and efficient as

revealed by [3, 4, 19]. If we use Xij then the

.
restriction Z 7y =0 will not be achieved. This is
i=1

due to X, j having in general, different values of the
matrix of observations in every jth time period [1, 7,
17, 18].

We can rewrite (5) to obtain new forms of
vectors and matrices as follows:

vt vt vt vt vt
X.Ay; =X.Gp+X.Z,0 +X..Gy; + X..B.g;, (6)
where Z,; = [XJ. Y ] and 0'= [a‘ : Bﬂ]

having dimensions mnx [Z k, + m(m— I)J and

h=1

(Z k, +m(m— l)J x 1, respectively.

h=1
Explanation of the vectors and matrices from

equations (5)-(6) are X,, denotes the mnx mz ki,

h=1

diagonal matrix whose submain diagonal is X,,

— 1 T m

X. :?ZX* ; where X, denotes the nx>’k,
j=1 h=1

matrix including all the exogenous variables in the
system, A denotes the mnxmn diagonal matrix
whose submain diagonal is the nxn matrix A,

y; denotes the mnx1 vector including all of the

nx1 vectors y,;, G denotes the mnxm diagonal
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matrix whose submain diagonal is 1, B, denotes
the
diagonal is the nxn matrix B,', p denotes the

mnxmn diagonal matrix whose submain

mx1 vector including all of 4, X, denotes the
mnx Yk, diagonal matrix whose submain diagonal
h=1

m
is the nxk, matrix X, @ denotes the Dk, x1
h=1

vector including all of the k, x1 vectors @, Y i
denotes the mnxm(m—1) diagonal matrix whose
submain diagonal is the nx(m—1) matrix Y ;, B_
denotes the m(m—1)x1 vector including all of the

(m—-1)x1 vectors B_,, v; denotes the mx1 vector
including all of y,, and €; denotes the mnxI

vector including all of the nx1 vectors g, as well

as n denotes the sampel size of observations. For

;
j=1,2,3,---,T, the restriction Z 7y =0 is changed

j=1
.
2.1, =0.
j=1

3 Estimating the Parameters

Now, we consider the equation (6). Estimation of
parameters models are conducted in three stages. At
the first-stage, we estimate all the endogenous
explanatory variables in the system in every time
period. This first-stage is the same as the previous

paper [2].
At the second-stage, we estimate parameters of

tys0y,B . and y, to obtain residual estimate of

equation (4). Because equation (4) has non-
homoscedastic error, we first tranform this equation.

Var(B;lahj ) =0, (BLBh )71 #op1,.  Premultiplying

1

(4) by o' (BLBh )5 , we obtain
L 1 L
(BthBh )2 Ay = (BLBh )2 llluh + (BthBh )2 thalh
+ (BLBh )E Y., B+ (BthBh )E 1y, (7)
1
+(B}B, )? B, 's,.

We can omit the value of o' because it is a finite

constant. Now, the equation (7) has satisfied a
regression model requirement.
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We then substitute Y, by Y_hj in (7), where
Yy :Y_hj +V_hj, where V_hj 1s residual estimate

from the first stage, and obtain new equations as
follows:

1 1 1
(BLBh )2 Apyy = (BLBh )2 llluh + (B[hBh )2 7,9,

1 . (®)

+ (BthBh )2 1y, +uy,
s =y ¢ ] 0o, £ B
having  dimensions nx(k, +m—1) and

1><(kh +m —1), respectively, and u;j denotes the

composite random error with

1 1
uy; =(B}B, )? V.;B_, +(B}B, )? B,'s,.
The right-hand side matrix of equation (8) is less
than full rank. But, we can not use nxn

dimensional transformation matrix Q directly, in
which Q1=0, to find the estimator of 0,. We

1
remind again that Q=1 —Ellt is symmetrical and

idempotent matrices.

We need to reparameterize equation (8), namely:

1 1 1
(B;Bh )2 Anyy = (BLBh)Z Ly + (B:th )2 z,9,

+uy, ©)
where g4 = u, + 7.
By GLS Solution, we first get the estimator of z;,
namely

A -1

Hij = (lt BLBhl) 1 B;Bh (Athj _Zhjeh) (10)
We then use (10) to find estimator of @, and by
GLS solution, we obtain

~ T _1
0,=| > Z\B;B,[1b} —In]Zm}
- (11)
x ZZLjBLBh I:lbth _In]Ahyhj >
j=1

where b} =(1tBthBhl)_1 1'B|B, having dimension

Ixn.
We recall to equation (8) and use the GLS
solution, we obtain the estimators of g, and y;,

namely
r=lpy 0 12
Hh :?thI(Athj _Zhjeh ), (12)
j=
and
j}hj :bth (Ahyhj 14, _Zhjeh)' (13)

respectively.
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From (11) to (13), we can estimate u;j as follows

ﬁ;j =AYy _l(ﬂh +7;hj)_Zhj0h =AYy _ﬁm- (14)
Matrices of A, and B, contain p, and A,. In case
p, and A, are not known, we can estimate it by

means of concentrated log-likelihood.
We pay attention to equation (4). Premultiplying

its both sides by B,, we obtain
B Ay, =B, 14, + B X0, +B Y B,
+B, 1y, +&,, (15)
By equation (15), the likelihood function of g,

j=12,3,---,T, denoted by L,

T _n 1
L, =H(27zaﬁ) 2 exp(—gsthjshj} and by
j=1 h
Jacobian transformation, we obtain the natural
logarithm of L, as follow:
t
Z(B AthJ Bhahj)

on)—
O'h i=1
x(BhAhyhj ~Bya, )+ T In|[B, |+ T In|A, |,

1s as follows:

InL, ———1 (270,

where ||Ah|| and ||Bh|| are the absolute of the
determinants of A, and of B,, respectively.

We take derivative for o;. Setting this derivative
equal to zero, we obtain the estimator of o,
namely:

o 1R t
G :ﬁjzz;(BhAthj _Bhahj)

(BhAhyhj —-B,a,; )

By (18), we obtain concentrated log-likelihood as
follows:

.
InL5™" = C——l ( Z(B Ay, —Ba; )t

(16)

x(BhAhyhj ~B,a, ))+T In||B, (17)
where C———l n(2z )—ﬂ
2 2
Let W have eigenvalues o,w,,---,@,. The
acceptable spatial autoregressive and spatial
autocorrelation parameters are <py(4)<1

[20]. We use numerical method for InLi™" to find

estimators of p, and /4, namely method of forming

sequence of p, and A, by means of R program [1,

7, 17, 18]. Its procedure is as follows:

1. We make sequences values of p, and 4,
respectively, namely
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P, =seq(start value, end value, increasing), and

A, =seq(start value, end value, increasing).

2. For every y,; and ag, h=1,23,--m, we insert

values of p, and A, in (17). Because the values
of a, are unknown, we use the estimator, a,,
with

where a, = l(ﬂh + Vi ) +7Z,0,,

]
3. Finding the values of p, and A, that gives the

z,=|X,

largest In ;™.

Based on the estimate p, and 4, the
equations (11) to (13) can be rewritten as follows:
-1
{ZZ}]JBt W[ 10} - ]Zm}
(18)
xZZthJB‘ W[ 10, — L, Ay,
.14
iy ==b; Z( Vi~ Zyy ) (19)
and
7w =D, (Ahyh,- —1i, - 7,8, ) (20)

respectively, where
A, =1,-pW, B, =1, -4 W, and
AL A -1 AL A
b, =(1'B}B,1) 1'B}B,.
The furthermore, equation (14) can be rewritten as
follows:

ﬁ:j =AYy _l(lah +7;h1) Zme thJ ay. (21)
We then use (21) and (16) to find the estimated
covariance matrix of the estimator ﬁ:j , namely

Op  Op Oim
A ) ~ A
Oy 0, Oy Oom
- A ~ A2 A A2 A . *
X=\6, 0, O Gy |» On =0, ifh=h
A A A )
_Gml amz O-m3 Gm B
with
A Rt
.= Zu B
hj
i T(n ( ) (k +m-1)4 !

where &; denotes the hth estimated error variance,
6,,. denotes the h'th and the hth estimated error

covariance, and X denotes mMxm estimated
covariance matrix. We change the denominator of
(16) so that it becomes an unbiased estimator [18].
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From (6), we have an error covariance matrix,
namely var(XL*B*s ; ) = X..B. Var(s J. )BLX** =X,
This covariance shows that the random errors are

heteroscedastic, where Var(s i ) = E(s jstj ) for

h=h"=1,2,3,---.m

t [t t t t
81—[311 &5 & v &y
to_
ahj_|:gh1j Ehaj  Chsj ‘9hnj:|’
in which we assumed that
. - -k
o.. ifi=i
E(ghijgh*i*-): "
! 0 ifi#i

that We obtain

t\ =
SO E(shjah*j ) =01,

var( ) X®I, with mnxmn as its dimension.

Consequently, X, = X..B. (Z®I, )B!X.. which is
m>» k,xm>» k, symmetrical matrix. If X is
h=1 h=1

unknown then we can use its estimator. If we use its
estimator then Z =X\.B (E@I )

In the above results, we see that the error
variance in equation (6) is not constant and the
matrix in the right-hand side is less than full rank.
For the last-stage, we overcome those problems
again by means of reparameterization and GLS. The
estimators are as follows:

-1

0= {ZZEH*M*Z 11 gzj H'M Ay |, (22)
n T

fi= [T GtH*G] GtH*Z(AyJ —z,.e), (23)
j=1

7,=[GH'G| G (Ay, -GA-26). (24

where
H =X..X;'X!., and
Ak ty* -1 oy
M =G|[G'HG]| G'H -1,
They have dimensions mnxmn, respectively.
In this paper, the estimators of 0,a, and y, are
called the estimators of feasible generalized least
squares-multivariate general spatial three-stage least

squares fixed effect panel simultaneous models
(FGLS-MGS3SLSFEPSM).

4 Properties of Estimators
Theorem (Consistency). If
XAy, =X.Gp+X.LZ,0+X.Gy, +X.B.g,
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as defined in (6), then é,ﬁ, and

estimators.
Proof. Recall (6). This can be rewritten as
=Gu+ ZJ.0+GyJ. +B*sj. However, we use the

¥, are consistent

estimate p, and ih The equation (6) can be
Ay, =Gp+Z,0+Gy, +B.g;.
Estimators of equation (6) are as follows:

-1
{iz‘jﬁ*m*zi izt.ﬁ*M*ij

j=1 j=1

} {ZZ‘ AN B }

rewritten as

.
=0 {ZZ}H*M*Z
j=1

where M'G = 0,
[T G'H G]

ﬁ
—u+ TGHG [ )

where Zy ; =0, and

=
; =[G‘ﬁ*G] GH( ~Gji- Ze)
=(u—;1)+[ctﬁ*c] G'H'Z, (9—9)+’Yj
+[GH'G] GH'Be,.

We refer to [3, 4, 14, 16, 21-23]. Asymptotic
expectation and variance of , n, and §y, are as
follows:

E{6} = lim E {6

n—oo
T—oo

{ ZZ‘ H'M'B.g, }

n—o
T—>o

-1
. | LR
:6+11mE{{nT ZZ‘J.HM ZJ}

—

n—oo

=0+ 1imLTK} {hm—ZZtH*M*B XO}
n—)oon
T —>®

=0+
n—w
T

-1
th} x 0= e+[K] x0

=0,
where K and K are constant nonsingular matrices.
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-1
:
= {ZZ‘J.H*M*Z j

j=1 j=1
-1
.
Sty t Yr ot
xBH'M ZJ{Z‘ZJ.H M ZJ} :
J:
where H and H'M' are symmetrical. Now,

-1
lim asy. Var{ } {ZZtH M'Z. } {iZtI:I*M*]%

n—o
< lim— (£®1,) | BIA'M'Z,
2nnt

T—>w

I11masyvar{} [K] {i Z'HM'B. x0
Tow

-1
xBIH'M'Z ]{hm K}
n—oo

T
=K XOX[KI =0,
This shows that 6 is asymptotically unbiased
estimator. If N—>o or T —o or both of N— o
and T — oo, then asy. Var{é} — 0. Therefore, 0isa
consistent estimator. Next,
E (i) = lim E (i)

T

| [P I [ S
=p+| lim—| -G'H'G GH'Z
o [?15?;“[” } J(Z ‘
x[e—lim{é}}+hmZGHBE{ }J
% T35 141
=p+ limi[lK T ic‘ﬁ*z (0-0)
g eznTln = J

=u+[limL I_(l]l]x(0+0)=u,

and K,
matrices. We have

where K, are constant nonsingular
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asy. Var{ } = asy. Var T

+ asy. Var{

asy.var %[T GtI:I*G]_1 ZG‘I:I

j=1

{ZG H'Z, asy.var{0|Z IQI*G}[T GH'G

j=1

asy. Var{[T GIICI*G]f1

® Q
=

F)

o™
%f_
s

_|

Q Q
anl

><|:T G'H'B.(X®I,)BH
®

n—oo
Tow

N
lim asy.var{[T G'H 1ZG‘H Zj()}

FnTin = e
: 11 e T
xZ{H'G |lim—| ~G'H'G
pantin
1 — -1 T Ak 7y *
=lim—[K, | | Y G'H'Z;x0xZH'G
ant =
th—[K]
TA)aa
=0x0x0=0.
P L A
lim asy.var{[T G'H G] > G'H B*sj}
T—>w i=1

-[GH'G] | GH'B. 1iml(2®1n)}ﬁiﬁ

15
-1
=[K,]"'[ G'H'B. x0xBIA'G || lim 1‘(1}
T—oo
=K,'x0x[K,]" =0
Consequently, limasy. var{fi} =0.
T—>oc

This shows that p is asymptotically unbiased
estimator. If N—>o or T — o or both of N— o
and T —oo, then asy.var{fi} —0. Therefore, ji is

a consistent estimator. Now,
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£ {7} = imE {3

n—o
T

- [u ~limE {a}} + [GtI:I*GT G'H'Z,
T

n—oo n—o
T—oo T—oo npn

x(ﬂ— lim E{é}}ryj + liml{lG‘I:I*G

xG'H'B,E {sj }

Efif=(n-n)+[K ] GHZ; (0-0)+y,

’ ég,%%[f(] ] GA'B. %0

:71'

asy.var{f(j } = asy.var {(u —fi)+ [Gtﬁ*G]q

asy.var {[GtI:I*G]l GH'Z é}

xG'H'Z;(0-0)+v,

+[GH'G] G'H'Be, }

=asy.var {ji

+asy.var [Gt G]
[G'HG|

*

N
>
—

N 1A,
H G'H
A -1

+asy.var{| G'H G'

]
= [G‘ﬁ*G]_l G'H'Z jasy. Var{é}
x Z}I”{"G[(;@I"G]1 ,

asy.var {[GtI:I*G]1 thl*ﬁ*sj }

n—ow
Tox

lim asy. var {[G‘I:I*G G'H'Z 6}

[GH'G] G'H'B.(z81,)
<BH'G[GHG] .
-1

nN—o0
T—>w

[G‘I:I*GI1 GII:I*Zj [lim asy.var{é}}
xZH'G[G'HG]’
[K,]'G'H'Z, x0xZ.H'G[K,]"

b
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A -l Aun
lim asy.var{[G‘H G| G'H'B.e j}
T—>w

= [Gtﬁ*GT G'H'B. {nml(z ®1n)}
n—oo n
T—oo »
f\t A . 1 1 t 2k
xB.HG|Iim——GHG
n—>o T n

Too
-1
=[K,] G'H'B. x0x ﬁiﬁ*G{lim%Ki

=0x[0]' = (infinit),
therefore, convergenity be satisfied only if n-— oo,
namely

. toy* -1 1Y * 1
hmasy.var{[G H G] G H B*sj}
n—o0
Lol -1 S el .
-[G'H'G]| G'H'B, {hml(>:®1n)}
| i
x BLH*G[lim—GtH*G}
n—oo n
Ak A kel lalEY . gk 71
~[K,]" G'H'B. x0x BIA'G| limK, |
=K,' xOx[Kl:lfl =0.
Consequently, limasy. Var{«} i } =0.
This shows that §, is asymptotically unbiased

estimator. If n-—oo, then asy. Var{f( i } —0.

Therefore, ¥, is a consistent estimator.

5 Illustration
Suppose there are three endogenous variables

A and six  exogenous  variables
Xi1s X125 X5 X505 X315 X;, Observed for two time
periods and the number of observation being 10
locations. We use illustration of data, locations, and
row-standardized spatial weight matrix as it was
presented in [2]. The equation models are as
follows:

Yig = By 0 X T 0 Xy +plwity1j + Yaij
+:Bl3y3ij 715+ Ui

Yaij = My + 0 X5 + O Xy +,02W§y2j + B Vi
+1323Y3ij 725+ Uy

Yaij = My 0 Xyp5 F O Xy +,03WitY3j + B0 (25)

+ B Yaij + 735 + Usips
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Uy &y ON(0,07),

Uy ﬂ,zw Uy, + &y, &y ON (0 02)

/”twu”+5lu,

Us; ﬂgw Uy + &y, &y ON (O 0'3)

where
— | - t T
Wy, W, W3 o0 Wiy, W,
t
Wy Wy, Wy, W, 10 W,
_ cee = t
W= W31 W32 W33 W3,10 - w3
t
| Wiog  Wign Wi Wigio | [ Wi |
7 -
=|:Wi]’ |:1,253a"',105

The formulation of Moran Index is as follows:
10 10

ZZ i’ (yhu yhl)(me th)

_ i=li'=l y;jwy:“
IhJ 0 y*t:y*. 9
Z(yhu - yhj) e
for h=1,2,3, J
i=1

If there is at least one I >E(l), then we

conclude that there is a spatial influence for the
equation models.

yl] :15'809 721 228.30, y31 :24.90’

l,, =-0.2442; 1,, =0.0539; 1,, =0.4586;

l,, =-0.2317; 1,, =-0.0878; |32 =-0.1078;
—=-0.111L

E()= n-1 10-

Based on the above result, by means of R Program
version 3.6.1, we obtain that there is a spatial
influence for the equation models.

We then continue to estimate parameters by
means of FGLS-3SLS. For the first-stage, we
estimate all the endogenous expalanatory variables
in the system in every time period and the results are
presented in Table 1.

For the second-stage we estimate X,. But, we

and E(Ih )

first estimate both of spatial autoregressive and
spatial autocorrelation by means of equation (17).
By W matrix, we have the acceptable spatial
autoregressive ~ and  spatial  autocorrelation
parameters are —1.6242 < p, (ﬂh )<1. By method of
forming sequence both of p, and 4, with
increasing 0.01 we obtain

1. p,=seq(-1.6142,0.99, 0.01)and

A, =seq(-1.6142, 0.99, 0.01).
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2. For every Yii and ahj,h=1,2,3, we insert

combination of all possible values of p, and A,
to (17). Because a, is unknown, we use the

estimate a,;, where ﬁhjzl(,&h+79hj)+Zhjéh,

'

3. We P =-1.6142, 1 =0.9258,
P, =-1.6142, 1,=-02242, p,=-1.5742, and

/13 0.4658 those give the largest InLS™", InL>"
and InL3",

with Z,; =[ X,

obtain

respectively.

Table 1 Estimated values for endogenous
explanatory variables
Endogenous explanatory

Time cha variables
tion Yi- Y- Y-

estimate estimate  estimate

1 1 16.5625 26.5828  21.7290
2 15.0373 28.5890  25.1588

3 16.1904 27.6672  20.7955

4 12.3775 26.0621  23.9145

5 16.1804 28.3403  22.0819

6 17.2918 26.9959  24.8593

7 18.7007 29.1060  26.5129

8 12.3543 31.5231  28.7592

9 16.4805 31.4345  30.8012

10 16.8246 26.6991  24.3877

2 1 155100 25.9073  23.1069
2 17.3247 27.0314  24.7638

3 15.8433 26.3597  22.8089

4 13.3019 254562  21.0773

5 17.3259 29.7492  27.8872

6 18.1930 30.2621  28.3106

7 18.0785 31.1379  29.8797

8 14.7653 32.0924  30.1569

9 149671 29.3371  27.3870

10 18.6902 26.6667  23.6217

By sequences of p, and A, with increasing
0.01, we can also make graphs among the values of

rho, lambda, and the values of concentrated log-
likelihood as presented in Fig.1.
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Fig.1: Graphs of function of rho and lambda
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As we need to know in Fig. 1, rows are the points of
rho that its values are seq(-1.6142,0.99, 0.01),

columns are the points of lambda that its values are
seq(-1.6142,0.99, 0.01), and value is the value of

InLcon. There are 261 points both of rho and
lambda. Its points are 1,2,3, untill 261.

Table 2 Estimate values for residual errors

Residual errors

Time cha- u- Up- Us-
tion ; : ;
estimate estimate estimate
1 1 530.9617 3.6731 -20.1653
2 634.4891 123.6771 -30.2136
3 708.4265 -83.8497 20.1640
4 821.6256 69.4616 11.7260
5 677.8279 -63.3284 14.2880
6 612.9724 93.3877 78.6841
7 612.4407 151.2321 62.3801
8 570.8471 2454605  -133.6357
9 609.1129 280.6660 10.3691
10 560.6974 109.3295 57.4756
2 1 1,021.2697 -122.8737 58.6738
2 1,005.5465 -99.2300 60.9696
3 973.8582  -236.6423 73.0186
4 945.0748  -280.0563 73.3787
5 748.1006 33.4929 -10.1951
6 846.8442 -25.4341 16.2969
7 828.7046 73.9246 -26.9565
8 801.7122 79.0934 -50.7021
9 927.9174 -78.3885 -50.9108
10 932.3442  -215.1956 104.0915

From (18) to (20), we obtain

[, =59.8488; [, =35.7021; j, =30.2172;

7, =-4.7589; 7., = 4.7589;
75 =3.0530; 7,, =-3.0530;
73 =1.2893; 7,, =-1.2893.

A a, 7.5482
6| || || 308074

) B, | | 34.8812

SENFY 3.1676
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-1 | % 7.9886
o._| || % |_| 100995 |
) B 6.2486
P ] B, | 445616
co | 8.2808
o | o || G2 || 9084
] B | |-23.8113
LB ] | [16.0997

Next, from (21) we obtain the estimate values for
residual errors being presented in Tabel 2. We then
use the estimate values for residual errors (in Table

2) to find % as follow:

16,407.7430 -13,327.4840 3,586.3450
¥ =(-13,327.4840 55,037.3740 -6,806.3970 |,
3,586.3450  -6,806.3970  8,201.1720
and we obtain
[ 95,015,762,019 112,938,200,311

112,938,200,311
95,961,464,592

| 3,116,649,203
95,961,464,592
114,062,507,032
96,916,769,558

3,147,439,542

A

134,249,432,552
114,062,507,032

3,704,593,381
3,116,649,203 |
3,704,593,381
3,147,439,542 |,

1,100,342,293

where X, is the estimator of covariance matrix.

For the last-stage, we estimate the parameters of
equation models (25). From (22) to (24), we obtain

a, ] [ 0.1967]
a, | |-0.2607
a,, 0.2356
ay, | |-0.0666
a, 0.0036
| %2 || 03796
B, | | 03797
B | |-0.3355
B, 0.3474
By 1.1750
Bs; 0.0009
B | | 1.5913]
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7| [-4.4505 7 4.4505
?1 =|7ra |=| 1.9577]; '?2 =| 7, |=|-1.9577|;
731 1.5276 7 | | -1.5276

and the estimators equation models (25) are
Y, =47.7816+0.1967X, ;, —0.2607X,,;,

-1.6142wly,, +0.3797y,,, —0.3355y.;,
—-4.4505+0,;,

¥,i =30.2635+0.2356X,,;, — 0.0666X,,;,
—1.6142w}y,, +0.3474y,, +1.1750y,;,
+1.9577+ 1,

¥ =-3.0592 +0.0036X,,;, +0.3796X,,;,
—1.5742w}y,, +0.0009y,;, +1.5913y,,,
+1.5276 + 0y,

0, =0.9258w'd,,

Oy, =-0.2242w'd,,

d,, = 0.4658w;i,,,

Vi, =47.7816+0.1967X,,;, —0.2607X, ,;,
-1.6142w}y,, +0.3797y,,, — 0.3355y,,,
+4.4505+4,,

¥,i» =30.2635+0.2356X,,;, — 0.0666X,,,,
-1.6142w}y,, +0.3474y,,, +1.1750y,,,
-1.9577+1,,,

Vs =-3.0592 4+ 0.0036X, ;, +0.3796X,,,,
—1.5742w}y,, +0.0009y,,, +1.5913y,,,
-1.5276 +0y;,,

0, = 0.9258w'a,,

Oy, = -0.2242w'i,,

0, = 0.4658w;1,,,

where 1 are the estimate values for residual errors

as given in Table 2.

6 Conclusion

In this paper, we are motivated to develop
simultaneous equation models for fixed effect panel
data with one-way error component by means of
3SLS solutions, especially for general spatial.

The numerical approximation estimators of
parameter models are obtained by means of
concentrated  log-likelihood formulation  with
method of forming sequence. In this paper, we use
the increasing values 0.01.

The closed-form estimators are obtained by
means of feasible generalized least squares-three-
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stage least squares (FGLS-3SLS) and they are called
the estimators of feasible generalized least squares-
multivariate general spatial three-stage least squares
fixed effect panel simultaneous models (FGLS-
MGS3SLSFEPSM). All estimators are consistent
estimators.

There is one limitation of this paper, we still use
the numerical approximation to find the estimators
of spatial autoregressive and spatial autocorrelation.
In future research, we encourage to find the closed-
form estimators of spatial autoregressive and spatial
autocorrelation. In addition, to develop models not
only for fixed effect but also both fixed effect and
random effect (mixed models).
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